
A Testbed to Simulate and Analyze Resilient
Cyber-Physical Systems

Pranav Srinivas Kumar, William Emfinger and Gabor Karsai
Institute for Software Integrated Systems,

Dept. of EECS, Vanderbilt University,
Nashville, TN 37235, USA

Email:{pkumar, emfinger, gabor}@isis.vanderbilt.edu

Abstract—This paper describes a testbed for development, de-
ployment, testing, and analysis of Cyber-Physical Systems (CPS)
applications. The testbed incorporates smart network hardware,
allowing high-fidelity emulation of CPS network characteristics,
and CPS simulation environments to enable high-frequency sen-
sor reading, actuator control and physical environmental changes.
We discuss the architecture of this testbed and present the types
of experiments and applications which can be run to study hard-
ware and software fault tolerance, software reconfiguration, and
system stability characteristics in distributed real-time embedded
systems. We also describe the scalability, limitations, and potential
extensions to this testbed.

I. INTRODUCTION

Distributed CPS are hard to develop hardware/software
for; because the software is coupled with the hardware and
the physical system, software testing and deployment may
be difficult - a problem only exacerbated by distributing the
system. Many systems require rigorous testing before final
deployment, but may not be able to be tested easily in the lab
or may not be testable in the real world without first providing
the assurances that the tests produce. These types of systems
must be tested for performance assurances, reliability, and fail-
safety. Examples of these systems include UAV/UUV systems,
fractionated satellite clusters, and networks of autonomous
vehicles, all of which require strict guarantees about not only
the performance of the system, but also the reliability of the
system. Because of the need for such strict design-time guaran-
tees, many traditional techniques for software testing cannot be
used. Cloud-based software testing may not accurately reflect
the performance of the software, since many of these systems
use specialized embedded computers, and furthermore does not
provide the capability to easily integrate a system simulation
into the software testing loop. For such systems, a closed-
loop simulation testbed is necessary which can fully emulate
the deployed system, including the physical characteristics of
the nodes, the network characteristics of the systems, and the
sensors and actuators used by the systems.

Emerging industry standards and collaborations are pro-
gressing towards component-based system development and
reuse, e.g. AUTOSAR[1] in the automotive industry. As these
systems are becoming increasingly more reliant on collections
of software components which must interact, they enable more
advanced features, such as better safety or performance, but
as a consequence require more thorough integration testing.
Comprehensive full systems integration is required for system

analysis and deployment, and the development of relevant test-
ing system architectures enables expedited iterative integration.
Developing these systems iteratively, by prototyping individual
components and composing them can be expensive and time
consuming, so tools and techniques are needed to expedite
this process. Our testbed architecture was developed to help
address these issues and decrease the turn-around time for
integration testing of distributed, resilient CPS.

Examples of such systems which can be prototyped and
tested using this architecture are (1) autonomous cars, (2)
controllers for continuous and discrete manufacturing plants,
and (3) UAV swarms. Each of these systems is characterized
as a distributed CPS in which embedded controllers are net-
worked to collectively control a system through cooperation.
Each subsystem or embedded computer senses and controls a
specific aspect of the overall system and cooperates to achieve
the overall system goal. For instance, the autonomous car’s
subsystems of global navigation, pedestrian detection, lane
detection, engine control, brake control, and steering control all
must communicate and cooperate together to achieve full car
autonomy. The control algorithms for each of these subsystems
must be tested with their sensors and actuators but also must
be tested together with the rest of the systems. It is these types
of cooperating embedded controllers which are a distinguish-
ing feature of distributed CPS. Integration testing for these
distributed CPS can be quickly and easily accomplished using
hardware-in-the-loop simulation, but must accurately represent
the real physical system, hardware, software, and network.

In scenarios like the automotive networked CPS, one of the
main challenges with system testing is the discord between the
standardized networking protocols and communication meth-
ods e.g. CAN bus, and the manufacturer-specific implementa-
tions of these methods. It is difficult to obtain public access
to the implementation details for such interaction patterns
and therefore pure simulation of the communication protocols
using event-simulation tools is not sufficient in validating
resilient application performance. The comprehensive testing
for such safety-critical systems require replicating the CPS by
using a testing infrastructure that provides similar hardware
and executes the exact embedded control code that would
execute on the final system. Our proposed architecture aims
at achieving this level of testing refinement.

The rest of this paper is organized as follows - Section
II states the various requirements that we have identified
for a resilient CPS testbed. Section III describes the overall



architecture for the testbed and Section IV briefly presents
our design and construction methods. Section V details our
concrete experiments with the testbed and Section VI discusses
the limitations we have identified. Lastly, Sections VII and IX
present potential future extensions and concluding remarks.

II. TESTBED REQUIREMENTS

The purpose of this testbed is to provide researchers and
developers a platform for development, testing, and analysis
of distributed, resilient CPS applications. The testbed must
provide (1) capable hardware on which applications can be de-
ployed. (2) a networking infrastructure facilitating application
interactions, (3) a set of simulation environments to integrate a
physics model with sensing and actuation, and (4) an interface
to couple application processes with the simulation. Critical
to each of these components is the requirement that the sum
of all characteristic behaviors must reasonably and reliably
approximate the behavior of the real systems.

For the testbed hardware, this means that the proces-
sor functionality, speed, and memory should have similar
characteristics to the systems’ processor. This requirement is
easily met since most CPS development or embedded system
development starts with a prototyping or developer board
from the processor manufacturer which allows for testing and
development on the actual processor, before fabricating custom
boards. These boards can be used as the hardware for the
testbed.

For the application communications, it is imperative that
the application network traffic receives reasonably similar
network services on the testbed as it would in the real system.
This means that the network traffic should see approximately
the same latency, buffering, routing, etc.

The simulation is one of the most critical components
of the CPS testbed, since it provides the feedback from the
simulated physical world to the applications, which is a critical
component of CPS software development. The environment
and physical domain in which the system will be deployed
affects the simulators which can be used, and the system
itself affects the required timing properties of the simulator.
Irrespective of those two concerns, the general requirement
of the simulator is that it runs at least as fast as ”real-
time,” where real-time really means faster than the highest
sampling/actuation rate required by the system.

Coupled with the simulation requirements is the final
requirement to close the loop between the physical simulation
and the application hardware. Closing this loop allows for
the applications on the testbed hardware to interact with and
affect the simulated physical system. This communications
layer must integrate with the simulator, a requirement generally
met by a plug-in which exposes an API over sockets to
communicate with the simulator. Furthermore, the commu-
nications layer must have reasonably accurate timing with
respect to the sensing and control actions required by the
applications. Because this communications layer simulates the
direct physical connection a host has to a sensor or actuator,
any extra overhead, jitter, or interference caused by the network
must be taken into consideration when evaluating test results.

III. RCPS TESTBED ARCHITECTURE

Cyber-Physical Systems require design-time testing and
analysis before deployment. Several CPS scenarios require
strict safety certification due to the mission-critical nature of
the operation, e.g. flight control and automation. It is often
times impossible to test control algorithms, fault tolerance
procedures etc. on the real system due to both cost and
hardware accessibility issues. To counter these issues, there
are two principle methods in which a CPS can be tested and
analyzed: (1) Construct a complete model of the CPS in a
simulation environment e.g. Simulink [2] and simulate the
system while accounting for run-time scenarios, (2) Establish
a testing environment that can closely resemble the real CPS
in both hardware and software. The problem with simulations
is that it is hard to establish the network topology, emulate the
application network and base processing power while running
a physics simulation in the loop. Our RCPS architecture
implements the latter alternative, as shown in Figure 1. We
propose a generic testing environment that uses embedded
boards, programmable network switches and physics simula-
tion machines to emulate real CPS deployments.

Fig. 1: Testbed Architecture

The testbed consists of 32 RCPS nodes, each of which
is a Beaglebone Black (BBB) [3] development board run-
ning Linux. We execute a full software stack including a
middleware and a component model, although much of this
stack is not within the scope of this paper. For the subset of
CPS we are interested in, the behavior of the CPS can be
much more precisely emulated with these boards compared
to running the applications inside of a standalone simulation.
For example NASA’s CubeSat Launch Initiative (CSLI) [4]
provides opportunities for nanosatellites to be deployed into
space for research. CubeSats are small (4-inch long) satellites
running low-power embedded boards and being prepared for
interplanetary missions [5] to Mars. A distributed set of
CubeSats can be easily tested with this architecture if it can
be integrated with a high-fidelity space flight simulator.

The Gigabit Ethernet port of each BBB is connected to
a Communication Network switch. This is a programmable
OpenFlow [6] switch, allowing users to program the flowtable
of the switch to control the routes that packets follow and
completely configure the full network and subnets required for
their emulated deployment. Furthermore, the configurability
of the communications network enables per-link or per-flow



bandwidth throttling, enabling precise network emulation. The
primary Development and Control machine, running our soft-
ware development tools, communicates with the BBBs using
this network. After software applications are deployed on this
testbed, the characteristics of the real CPS network can be
enforced on the application network traffic. Therefore, this
network emulates the physical network which a distributed
CPS would experience on deployment.

Each RCPS node is also connected to a Physics Network
using a 10/100 USB-to-Ethernet adapter, since the BBBs only
have one gigabit ethernet port. This network is connected to a
Physics Simulation Machine running Cyber-Physical Systems
simulations. Two such simulators are discussed in Section V.
This network provides the infrastructure necessary to emulate
CPS sensing and actuation in the loop, allowing application
software to periodically receive sensor data and open interfaces
to output actuator commands to the simulation.

The Physics Simulation Machine closes the interaction loop
for the testbed nodes, allowing the physical dynamics of the
RCPS nodes to be simulated in the environment in which
it would be deployed, e.g. satellites’ orbital mechanics and
interactions can be simulated for a satellite cluster in low Earth
orbit (LEO).

IV. DESIGN AND CONSTRUCTION

The RCPS testbed was designed and constructed to be as
self-contained as possible, while allowing for extensibility and
modularity. The 32 BBB development boards were arranged on
4 laser-cut acrylic plates, with 8 boards on each plate, as shown
in Figure 2. Holes on each plate route network and power
supply cables from/to each board. With the communication
network switch on top of these boards and the physics network
switch on the bottom, the ensemble takes a total of 8U (rack
units) of space. The primary power supply is an off-the-shelf
300 W power supply with custom cabling to fan-out power to
all 32 boards in an efficient manner. By configuring the testbed
in this self-contained way, we can easily maintain it, monitor
it, and move it should the need arise.

Fig. 2: Beaglebone Black Boards - Custom Mounting

Using a 13U server cabinet and standard mounting equip-
ment, the network switches and simulation machines are

mounted on either side of the development boards. Figure
3 shows the fully mounted testbed. The cabinet supports
mountable base wheels which makes this setup easily portable.

Fig. 3: Constructed Testbed

V. EXPERIMENTS

To validate our claims about the testbed, we have run
several experiments that exercise its various aspects, primary of
which is its utility in sensing, actuation and control of dynamic
CPS scenarios. Our testing and experimentation parameters are
as follows: (1) We use the Robot Operating System (ROS)
[7] middleware and follow component-based software develop-
ment principles, (2) the physics simulation machine is running
an appropriate high-fidelity simulation with exposed interfaces
for input and output, (3) the development machine has full
network access to all RCPS nodes in order to successfully
develop, build and deploy applications on this distributed setup,
(4) the applications have direct access to the physics simulation
sensors emulating the real-world case where the sensor is
part of the very board running the application, and lastly
(5) the processes are able to log real-time activity to aid the
monitoring infrastructure. This monitoring not only validates
the behavior but also provides important measures such as
operational time stamps that enable post-deployment timing
analysis to assess the overall system performance.

This section briefly describes two unique scenarios pertain-
ing to flight control dynamics. These are mission-critical CPS
environments using different kinds of sensors, actuators and
physics simulations. The real-time requirements of both set
of applications are different and the average processing power
capabilities of both systems can be approximated to our testbed
nodes. Below, we categorize these experiments based on the
physics simulators used.

A. Orbiter Space Flight Simulator

This is a scenario we have used in the past [8] to simulate
a cluster of satellites. In our previous work, we used a minimal
testbed to study mobile cloud infrastructure and integrated
the Orbiter Space Flight Simulator [9] to analyze a 3-Sat
scenario. Now, with our RCPS testbed, the same scenario
can be extended up to 32 satellites. Given the flexibility of
this testbed, we can easily change the scenario to a 16-Sat
cluster with 2 embedded boards per satellite or any similar
variations. The amount of process concurrency and actuation



is dependent primarily on the deployment infrastructure used.
If a new test simply requires a new deployment model and
some artifact XML files, then the testing mechanisms can be
easily automated.

Fig. 4: 32-Sat Scenario

This scenario, shown in Figure 4, consists of 32 small
satellites orbiting as a satellite cluster in LEO. The satellites
each have different capabilities, with image sensors and imag-
ing processors distributed throughout the cluster. Each satellite
runs a satellite flight control application which determines the
state of the satellite, distributes the state to the rest of the
cluster, tracks the states of the other satellites, and controls
the satellite’s thrusters. This application communicates with
a single orbit maintenance application in the cluster which
maintains the orbital trajectories of all satellites in the cluster
and instructs the cluster to perform maneuvers when needed.
In addition to these to applications, the cluster’s resources are
provided to applications which perform image sensing, image
processing, and communication tasks.

Fig. 5: Scatter Maneuver

It must be noted in this scenario that Orbiter executes only

in Windows. The Physics simulation machine is a dual-boot
setup capable of supporting a wide range of simulation due
to both its CPU power (16 cores with 16 GB of RAM) and
its NVIDIA Quadro K1200 graphics card. Another limitation
to Orbiter is that the interface used to communicate with
Orbiter, OrbConnect, does not provide the full range of attitude
control for the satellites, although Orbiter supports this level
of actuation. Therefore, even though the scenario exercises a
scatter maneuver on receiving a critical command from the
ground station, as shown in Figure 5, the behavior of this CPS
is slightly inconsistent with the real-world scenario. Due to
this, we have moved to a different flight simulator, as described
below.

One of the relevant and interesting aspects of this satellite
example is the networking required between the satellites.
Because of the nature of the orbital mechanics governing
the motion of the satellites, the distances between each of
the satellites in the cluster varies periodically over time as
a sinusoidal function. This deterministic variation in distance
directly correlates to a deterministic network capacity variation
which also is periodic according to the orbital period of
the cluster. Because this information can be easily retrieved
from the simulation, it can be used to alter the emulated
network characteristics. Since the variation is deterministic and
calculable, the emulated network characteristics can be mea-
sured and compared against the calculated, predicted network
characteristics.

B. Kerbal Space Program

Kerbal Space Program [10] (KSP) is a widely popular
space flight simulator for a variety of platforms including
Linux, OS X and Windows. In this game, players get to
manage a space program, designing and building spacecrafts
and exploring celestial bodies.

While KSP does not provide a perfect simulation of reality,
it has been widely praised for its component-based design and
development process coupled with aerodynamic, gravitational,
and rigid-body interaction and simulation. In this simulation,
every man-made object follows Newtonian dynamics. Rocket
thrust and aerodynamic forces are accurately applied to the
vehicles based on the directions and precise positions in
which the force-affected elements are mounted on the vessel.
Using KSP, we have modeled scenarios for a variety of flight
missions including interplanetary travel. In this section, we
briefly describe an aircraft flight controller that was designed
and tested using the RCPS testbed and KSP.

This CPS scenario is a flight controller application used
to completely control a KSP aircraft from the primary space-
plane hanger to a destination airport. The application processes
require inputs from KSP e.g. sensor data about pitch, roll, yaw,
mean altitude etc. and interfaces to control the flight dynamics
e.g. thrust, pitch and heading. If these interfaces are setup,
then the processes can periodically retrieve flight telemetry and
provide commands for course correction and feedback control.

Using an open source project called kRPC [11] (Kerbal
Remote Procedure Call Server), the BBB nodes running CPS
processes are provided with an interface to the simulation.
Figure 6 shows the Stearwing A300 aircraft taking off from
the space-plane hanger and stabilizing at a cruising altitude



Fig. 6: Stearwing A300 PID Control

of 2000 meters, as shown in Figure 7. Each control unit in
the aircraft is simulated by a BBB. It is critical to incorporate
redundancy in all components and connections to assure that
the system can survive runtime failures, especially in airborne
software [12] [13]. So, many of the RCPS nodes in our testbed
act as redundant sensors, all connected to KSP, receiving and
periodically publishing messages. If one of the nodes in the
testbed fails, either due to a hardware anomaly or a software
fault, then the rest of the nodes are used to arrive at a general
agreement regarding the sensor value to be considered for
control.

Fig. 7: Stearwing A300 Altitude Profile

Like Orbiter, using KSP also has its limitations. However,
many such limitations are characteristic of the simulation
interface and not the simulation itself. The C++ interface
library we have used does not provide for the means to
control multiple vessels in the simulation. Instead, developers
are provided the complete control API for the active vessel,
which is the vessel currently in focus in the game. Although
such an interface is currently in the works, as it stands, KSP
is a good solution for testing CPS use cases where a set of
embedded boards are coordinating and controlling a single
vessel or medium. Also, the KSP community provides several
crowd-made modifications to the base game that supports
various vehicle parts, aerodynamic changes, and drag models
that enable researchers to build and test a variety of systems
including cars, rovers, UAV swarms, robots, and even laser-
guided systems. The open nature of this simulator makes this
a realistic testing environment for dynamic CPS specifications.

VI. DISCUSSION

Despite the capabilities of this RCPS testbed architecture
in analyzing distributed resilient CPS, its limitations must be
evaluated with respect to system applicability and experimental
validity. Such limitations govern the types of CPS which can
be developed and tested with this architecture, as well as the
scale of the systems to which this architecture can be used.

Because much of the testbed infrastructure is networking,
and because much of the distributed application development
and testing comes from the network infrastructure provided
by the CPS (and therefore emulated by the testbed), one of
the most critical aspects of the CPS testbed to analyze is the
networking infrastructure. In this testbed’s architecture, there
are distinct networks reserved for application level network
traffic, i.e. data which would flow on a real network in the de-
ployed system, and for physics simulation network traffic, i.e.
data which would be relayed by hardware directly connected
to the embedded boards. The simulation network traffic allows
the embedded hosts in the network to retrieve sensor data and
send actuator commands to simulated hardware on the physics
simulation node. Because this network is one of the major
differences between the testbed and the real system, it must
be carefully analyzed to determine how accurately it behaves
with respect to the real system.

The actual network in the testbed is comprised of two
parts: (1) a Gigabit network switch which is dedicated to the
physics simulation traffic, and (2) the 10/100 USB-Ethernet
adapters on each board which allow a direct connection to the
physics network. The USB-Ethernet adapters on the boards
do not allow the boards to utilize the full capabilities of
their Ethernet connections to the physics network, but provide
sufficient bandwidth for many sensor applications. For a single
host, many sensor streams or a few high-data-rate sensors
can adversely affect the host’s sensor timing and services,
thus affecting the system overall. High-resolution or high-
rate image-based sensing on a certain host may degrade the
performance of the host’s physics network link, but should
not affect the rest of the physics network. However, many
such high-bandwidth sensing applications distributed across
the cluster may degrade the overall performance of the physics
network. Because in the real system, these high bandwidth
data streams would be completely isolated and independent,
this type of network performance degradation can cause the
testbed applications’ behavior to deviate from the real system
applications’ behavior.

The other network which plays an critical role in the
testbed is the application network, which handles all network
traffic for the system which would actually be transmitted on a
network in the deployed system. The purpose of this network
is to enforce on the applications’ network traffic the same
network characteristics as would be seen in the real system.
Because the wired testbed application network is managed by
a smart network switch using OpenFlow, many different and
concurrent topologies can be enforced, and every link in the
networks can be configured with different, varying bandwidth.
For many types of networks, this type of network emulation
is sufficiently accurate and will provide meaningful, useful
test results. However, certain types of networks in deployed
systems cannot be easily emulated with this setup, for instance,
wireless networks with high error rates and high packet-loss



or collision rates are difficult to emulate using this network
infrastructure. Moreover, the environmental effects such as
multi-path or obstruction may be difficult or impossible to
emulate.

VII. FUTURE WORK/EXTENSIONS

A. Experiments

With this testbed, we are able to analyze different systems
and multiple different aspects of those systems. Our primary
goal with this testbed is the general analysis of distributed CPS
through certain aspects such as resiliency and security. Based
on this goal, we will analyze how certain systems behave with
respect to fault tolerance, fault propagation, failure mitigation,
and reconfiguration. These experiments govern some aspects
of the resilience of the systems, and we will specifically focus
on systems such as the aircraft software example mentioned
above, as well as UAV swarms, autonomous cars, and traffic
grid control systems.

Another critical aspect of these distributed CPS which
we wish to analyze is their security. Because our testbed
encompasses the physics, the hardware, the software, and the
network of the CPS, we can analyze multiple attack vectors and
their impact on the applications and the software infrastructure.
These experiments can be coupled with the resilience experi-
ments mentioned above to analyze the capability of attackers
to achieve specific goals of bringing down certain subsystems
or the overall system.

B. Testbed Analysis

To better understand the capabilities and limitations of the
testbed, we will measure such testbed characteristics as: (1) the
effect the USB/Ethernet adapter has on communications delay,
timing, and jitter, (2) the effect OpenFlow link management
has on applications’ usable bandwidth, and (3) the effect Open-
Flow dynamically altering flows and bandwidth re-allocation
has on active traffic.

C. System Analysis

Using our deployment and management tool suite, we can
analyze CPS deployments for system-level properties such
as (1) Buffer Space Requirements satisfaction and per-link
network traffic delay, (2) timing and schedulability satisfaction
without deadline violations or system-wide deadlocks.

1) Network Analysis: Because we can accurately and
precisely emulate the CPS network characteristics on the
testbed, we can analyze the performance of the networked
applications by measuring their utilized buffer space and
their communication delay. These measurements, performed
automatically throughout the system, provide a clearer insight
into the network services provided by the system and the
resource utilization required by the applications on the system.
Comparing these requirements and services we can analyze
the performance of the applications to determine the affect
the network and its service capacity has on the applications’
behaviors.

2) Timing Analysis: Timing analysis of models of CPS
are useful only when the modeling abstractions for the CPS
domain are uncompromising and the analysis techniques can
be validated by testing in an approximated CPS testbed. This
is one of our primary goals with the RCPS testbed. In previous
work, we have shown our timing analysis methods [14] [15]
for component-based distributed CPS. Using a generic I/O
component for integration with physics simulation, we are
working on modeling and analyzing the temporal behavior of
software components while interacting with simulations. Our
monitoring framework used with this testbed provides a strong
infrastructure and the necessary inputs for timing verification.

VIII. RELATED RESEARCH

Developing resilient software for CPS presents a unique
challenge. These systems execute software pieces that are often
times distributed across a collection of machines, presenting
risks and challenges to both human safety and developmental
costs. Research in such areas require tools and testbeds that
enable an approximated evaluation of the real system. As a
widely acknowledged challenge, several testbed architectures
have been proposed in the past tackling heterogeneous con-
cerns in CPS design such as security, fault tolerance and
determinism.

Among the various application design challenges, many
testbeds have focused on security research for CPS. Often,
the interactions between hardware components and software
control code in the real system is hard to replicate for testing,
mainly in dynamic real-world-like environments. For example,
in automotive networks, although the networking methods are
standards like CAN, the implementation details are left to the
hands of the board manufacturers and not easily accessible.

The maintainers of OCTANE [16] tackle these issues by
providing a software package and a hardware infrastructure to
reverse engineer and test automotive networks. By replicating
the interactions between the system hardware and the control
software, users can focus on security aspects in such networks
instead of configuring and setting up the testing tools.

Similarly, the UPBOT [17] testbed provides a testbed for
cyber-physical systems used primarily to test security threats
and preventive measures. It presents a testing infrastructure to
study several points of attack on programmable component-
based systems where the on-board intelligence may be ex-
hibiting safety-critical properties. The low cost and ease of
use makes this an appreciable learning tool for students and
researchers, especially ones lacking access to such testing
environments.

In an alternate study, the Pharos [18] testbed provides
a testing framework for mobile CPS. Using a networked
system of autonomously mobile communicating controllers,
the testbed demonstrates its utility in live testing of mobile
CPS deployments, with comparisons against system simulation
schemes. The study shows the absolute importance of validat-
ing simulation results with real-world experimentation and how
Pharos enables such testing.

IX. CONCLUSIONS

In this paper we have described a testbed architecture and
implementation which enables researchers and developers to



quickly prototype and develop distributed CPS applications
and analyze their performance with hardware-in-the-loop sim-
ulation on networks which emulate the real system’s networks.
We have described with a few examples the types of exper-
iments which this testbed can support and shown integration
with multiple different simulators. Further, we have analyzed
the limitations of this testbed for application to certain systems
and applications. Finally, we have covered some proposed
work for improving the testbed and testing framework in the
future through further analysis and extensions to the testbed.

ACKNOWLEDGMENT

This work was supported by DARPA under contract
NNA11AB14C and USAF/AFRL under Cooperative Agree-
ment FA8750-13-2-0050, and by the National Science Founda-
tion (CNS-1035655). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of DARPA,
USAF/AFRL, or NSF.

REFERENCES

[1] Autosar GbR, “AUTomotive Open System ARchitecture,” http:
//www.autosar.org/. [Online]. Available: http://www.autosar.org/

[2] “Simulink,” http://www.mathworks.com/products/simulink/.
[3] “Beaglebone Black,” http://beagleboard.org/BLACK/.
[4] “NASA CubeSat Launch initiative,” https://www.nasa.gov/directorates/

heo/home/CubeSats initiative.html.
[5] “NASA CubeSats Mission to Mars,” http://www.nasa.gov/press-release/

nasa-prepares-for-first-interplanetary-cubesats-on-agency-s-next-mission-to-mars.
[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[7] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[8] D. Balasubramanian, A. Dubey, W. R. Otte, W. Emfinger, P. S. Ku-
mar, and G. Karsai, “A rapid testing framework for a mobile cloud
infrastructure.”

[9] “Orbiter Space Flight Simulator,” http://orbit.medphys.ucl.ac.uk/.
[10] “Kerbal Space Program,” https://kerbalspaceprogram.com/en/.
[11] “Kerbal Remote Procedure Call Server,” https://github.com/djungelorm/

krpc/.
[12] A. J. Kornecki, “Airborne software: communication and certification,”

Scalable Computing: Practice and Experience, vol. 9, no. 1, 2001.
[13] A. J. Kornecki and K. Hall, “Approaches to assure safety in fly-by-wire

systems: Airbus vs. boeing.”
[14] P. S. Kumar, A. Dubey, and G. Karsai, “Colored petri net-based

modeling and formal analysis of component-based applications,” 2014,
p. 79–88. [Online]. Available: http://ceur-ws.org/Vol-1235/paper-10.pdf

[15] ——, “Integrated analysis of temporal behavior of component-based
distributed real-time embedded systems,” 2015. [Online]. Available:
http://conferences.computer.org/isorc/2015/papers/8781b019.pdf

[16] C. E. Everett and D. McCoy, “Octane (open car testbed and network
experiments): Bringing cyber-physical security research to researchers
and students.” in CSET, 2013.

[17] T. L. Crenshaw and S. Beyer, “Upbot: a testbed for cyber-physical
systems,” in Proceedings of the 3rd international conference on Cyber
security experimentation and test. USENIX Association, 2010, pp.
1–8.

[18] C. Fok, A. Petz, D. Stovall, N. Paine, C. Julien, and S. Vishwanath,
“Pharos: A testbed for mobile cyber-physical systems,” Univ. of Texas
at Austin, Tech. Rep. TR-ARiSE-2011-001, 2011.


